Year 9 Rational Numbers

Rational Number: A rational number is any number that can be written in the form $\frac{a}{b}$, where $b \neq 0$.

Rational Numbers

- Whole Numbers (1)
- Zero (0)
- Whole Negative Numbers (-3)
- Fractions
- $\operatorname{Proper}\left(\frac{2}{3}\right)$
- Improper $\left(\frac{16}{3}\right)$
- Mixed $\left(5 \frac{1}{3}\right)$
- Decimals (0.6)
- Percentages (37.3ं\%)
- Ratios (2:3)

Fractions, Decimals and Percentages

IMPROPER \rightarrow MIXED
$-\frac{16}{3}=5 \frac{1}{3}$

PERCENTAGE \rightarrow DECIMAL

$12.5 \%=0.125$

DECIMAL \rightarrow FRACTION
$0.12=\frac{12}{100}=\frac{3}{25}$
PERCENTAGE \rightarrow FRACTION
$12 \%=\frac{12}{100}=\frac{3}{25}$

RECURRING DECIMAL \rightarrow FRACTION

$0.2 \overline{5} \overline{3}$
Let x be $0.2 \overline{53}$
$x=0.2 \overline{53}$
$10 x=2 . \overline{53}$ - Cannot remove ending from x .
$100 x=25 . \overline{35}-$ Still can't as the recurring is not the same.
$1000 x=253 . \overline{53}-$ Same ending as 10 x , so take away.
$1000 x-10 x=253 . \overline{53}-2 . \overline{53}$
$990 x=251$
$x=\frac{251}{990}$

Percentages

INCREASING

Increase \$26 by 8\%
$100 \%+8 \%=108 \%$
$=26 \times 108 \%$
$=26 \times \frac{108}{100}$
$=\frac{2808}{100}$
$=\$ 28.08$

DECREASING

Decrease 26 kg by 8\%
$100 \%-8 \%=92 \%$
$=26 \times 92 \%$
$=26 \times \frac{92}{100}$
$=\frac{2392}{100}$
$=23.92 \mathrm{~kg}$

ROUNDING USING DECIMAL PLACES

Round 53.4358745 to 4 dp .
53.4358|745 - Round up.
53.4359 (to 4 dp .)

ROUNDING USING SIGNIFICANT FIGURES WHOLE NUMBERS

Round 3187586 to 3 sig. fig.
318|7586 - Round up
3190000 (to 3 sig. fig.)

ROUNDING USING SIGNIFICANT FIGURES DECIMALS
Round 5.34567234 to 5 sig. fig.
5.3456|7234 - Round up
5.3457 (to 5 sig. fig.)

ZEROS IN POSITIVE NUMBERS
3450000000 has 3 sig. fig.

ZEROS IN NEGATIVE NUMBERS
0.2000352 has 7 sig. fig. , but
0.0000352 has 3 sig. fig.

Approximation: Scientific Notation

POSITIVE NUMBERS

Move the decimal place until it is on the right of the last number you meet. Count how many digits you moved when moving the decimal place.
$6000000000000=6 \times 10^{12}$
$7450000000000=7.45 \times 10^{12}$

NEGATIVE NUMBERS

Move the decimal place until it is on the right of the first number you meet. Count how many digits you moved when moving the decimal place.
$0.000003=3 \times 10^{-6}$
$0.0000000234735=2.34735 \times 10^{-8}$

