THE ACIDIC ENVIRONMENT

Kris Choy

CONTENTS

9.3.1 INDICATORS	1
9.2.2 ACIDIC OXIDES	1
9.2.3 ACIDS AND PH	3
9.2.4 ELECTROCHEMISTRY	4
9.2.5 NUCLEAR CHEMISTRY	4

Sections of this document are © Board of Studies NSW 2002 from NSW Stage 6 Chemistry Syllabus 2002.

Use the right column on each page for notes

9.3.1 Indicators

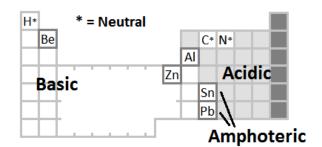
Definitions and Common Acids, Bases and Neutral Substances

- <u>Acid</u>: substances which **produces H**⁺ **ions** in solution
 - Vinegar (acetic), lemon juice (citric), fizzy drinks (H₂CO₃)
 - \circ Sour, stings/burns skin, conducts electricity, litmus \rightarrow red
- <u>Base</u>: substance produces OH⁻ ions in solution, soluble bases: alkalis
 - Cleaners (NaOH/NH₃), baking powder
 - **Bitter**, soapy, good conductors, litmus \rightarrow **blue**
- Neutral pure water, table salt, milk, sugars

Indicators

<u>Indicator</u>: substance that changes colour in solution, depending on acidity of solution

Indicator	Initial	Middle	Final
Methyl Orange	Red (3.1)	Orange	Yellow (4.4)
Litmus	Red (4.5)	Purple	Blue (8.5)
Phenolphthalein	Colourless (8.2)	Pink	Dark Pink (10.0)
Bromothymol Blue	Yellow (6.0)	Green	Blue (7.6)


Everyday Uses of Indicators

- Acidity of soils: Camellias (4.5-5.5), Apples (5.8-6.8), Annual (basic)
- Home swimming pools: approx. neutral pH
- Laboratory waste: often basic, e.g. processing photographic film

9.3.2 Acidic Oxides

Acidic, Basic, Amphoteric and Neutral Oxides

- <u>Acidic oxide</u>: formed by **non-metals**, reacts with water to form acid, reacts with base to form salts, forms covalent compounds
- <u>Basic oxide</u>: formed by **metals**, reacts with water to form bases, reacts with acid to form salts, forms ionic compounds
- <u>Amphoteric</u>: reacts with **both acids and bases**
- Neutral: do not react with either
- Inert gases rarely form oxides (XeO₂ created)

Sulfur Dioxide (SO₂)

- Natural sources: geothermal hot springs, volcanoes
- Industrial sources: burning/processing fossil fuels, extracting metals
- Equations:

Sulfur (in compounds) with oxygen: $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$ Metal sulfides: $2ZnS_{(s)} + 3O_{2(g)} \rightarrow 2ZnO_{(s)} + 2SO_{2(g)}$

NO_x (nitrous oxide N₂O, nitric oxide NO and nitrogen dioxide NO₂)

- Natural sources: NO/ NO₂ from lightning, N₂O from bacteria on nitrogenous materials in soils
- Industrial sources: NO/NO₂ combustion, N₂O use of N fertilisers
- Equations:
 Lightning and combustion: N_{2 (g)} + O_{2 (g)} → 2NO_(g)
 NO then reacts in air: 2NO_(g) + O_{2 (g)} → 2NO_{2 (g)}

Effect on Health and Environment

- Evidence from Antarctic ice core samples and observed damage
 - \circ Increased concentration N₂O (15% in 150 years)
 - o Increased damage to buildings, forests, aquatic organisms
- Difficulties gathering evidence about SO₂ and NO_x
 - Measured in 0.001 ppm instruments only available in 1970s
 - o CO₂ easier 360 ppm, ions not very soluble in water
- Effect on health: respiratory and lung-related diseases
 - NO_x can be toxic, increase effects of asthma

Acid Rain

- <u>Acid rain</u>: rain with **higher H⁺ concentration** than normal (**pH < 5**)
- Sulphuric and nitric acid, unpolluted (pH 5.5-6) is carbonic acid
 - $SO_{2(g)} + H_2O_{(l)} \rightarrow H_2SO_{3(aq)}$ forms sulfurous acid
 - $\circ \quad 2H_2SO_{3(aq)} + O_{2(g)} \xrightarrow{catalyst} 2H_2SO_{4(aq)} \text{impurities in air}$
- Causes:
 - Fall in soil pH: damage to vegetation (cannot absorb Ca/K)
 - Leaves, pine forests (waxes removed)
 - Buildings statues erode (CO₃ reacts), aquatic organisms

Le Chatelier's Principle

- The concentration of reactants and products at equilibrium will shift to counteract change in concentration, pressure or temperature
- Adding a catalyst only speeds up movement to equilibrium
- $\operatorname{CO}_{2(g)} + \operatorname{H}_{2}\operatorname{O}_{(l)} \rightleftharpoons \operatorname{H}_{2}\operatorname{CO}_{3(sq)}(+heat) \rightleftharpoons 2\operatorname{H}_{(aq)}^{+} + \operatorname{CO}_{3(aq)}^{2-}$
 - Solubility of CO₂ based on equilibrium

9.3.3 Acids and pH

Acids as Proton Donors

•

- Acids produce H⁺ ions (protons), e.g. $HNO_{3(aq)} \rightarrow H^{+}_{(aq)} + NO^{-}_{3(aq)}$
 - More accurately, $HNO_{3(aq)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + NO^-_{3(aq)}$
- Ionisation acid forms hydronium and nitrate ions

pH Scale and Formula

- pH (potential H): measurement covering range of H⁺ concentration
 o Acidic < 7, neutral = 7, basic > 7
- Concentrations range from 10 mol/L to 10⁻¹³ mol/L [H⁺]
- pH = -log₁₀[H⁺]
 - E.g. $[H^+] = 0.1 \text{ mol/L}, pH = -\log_{10} 0.1 = 1$
 - \circ pH from 7 to 6 goes from 10⁻⁷ to 10⁻⁶ = ten-fold change

Strength and Concentration

- Strong acids ionise completely: $HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl^-_{(aq)}$
 - E.g. HCl, H₂SO₄, HNO₃, HBr, HI
- Weak acids **do not ionise completely**: (⇒)
 - E.g. H₂CO₃, CH₃COOH, H₂SO₃
- For $HCl_{(aq)} \rightleftharpoons H^+_{(aq)} + Cl^-_{(aq)}$, $CH_3COOH_{(aq)} \rightleftharpoons H^-_{(aq)} + CH_3COO^-_{(aq)}$
 - o HCl equilibrium lies completely to right (all ionised)
 - CH₃COOH equilibrium lies to left
- Concentrated > 5 mol/L, dilute < 2 mol/L
- Polyprotic acids: ability to give up protons
 - Monoprotic: 1 proton, e.g. HCl, diprotic 2 p, triprotic 3 p

Acetic, Citric, Hydrochloric and Sulfuric Acid

Acetic (ethanoic)	СН₃ — СООН	Vinegar	
Citric (2- hydroxypropane- 1,2,3-tricarboxylic)	сн₂ — соон но — с — соон г сн₂ — соон	Citrus fruits , used as a food additive (flavour and preservative)	
Hydrochloric	н — сі	Stomach, cleaning metals and bricks, neutralising bases, pools	
Sulfuric	$H_2 - SO_4$	Most manufactured acid: fertilisers, fibres, car batteries	
Acid	Hydrochloric	Citric	Acetic
pH (at 0.1 mol/L)	1	2.1	2.9
Strength	Strong	Weak	Weak
Degree of Ionisation	100%	8%	1.3%

9.3.4 Defining Acids and Bases

Historical Development about Acids

Chemist	Theory	Limitation of theory		
Antoine Lavoisier (1780)	All acids contain oxygen and that causes acidity	Muriatic acid (HCl) did not contain oxygen, most bases contained oxygen		
Humphry Davy (1815)	Metals could displace hydrogen in acids Acids and bases formed salts and water	Only classifies substances, without interpreting properties		
Svante Arrhenius (1884)	Acid ionises to produce H⁺ ions Base produces OH⁻ ions	Excludes oxides, only applies to aqueous solutions		
Johannes Brönsted	Independently (Denmark and Britain)			
Thomas Lowry	 Acids are proton donors, Bases are proton acceptors Looked at properties relative to the solvent 			

(1923)

• <u>Brönsted-Lowry theory</u>: that a proton is transferred from an acid to a base in an acid-base reaction