
Kris Choy • 26 March 2017

4. Human Weakness, Physical Security and Hashes

COMP6441 • KC Notes

4.1 Human Weakness: Problem

 Humans are the weakest part to security

o Greed: corruption in police, bank tellers, abuse of trust and power

o Fear, emotion: humans act and think irrationally

o Laziness: humans do not like repetition, and routine checks may just be ticked off

o Pride, anger, curiosity, ignorance, overload of information

o Compounded by normalised behaviour – “this was always how it has been”

 Costa Concordia disaster and South Korea's Sewol ferry disaster

o In the former, the captain of the boat left first and didn’t think to evacuate the

passengers first

o In the later, the captain told everyone to stay on the boat

 Elaborate setups that are only security theatre – only looks secure

 Other disasters with systematic failures that need to be stopped, (e.g. child abuse, refugee and

detention centre conditions)

4.2 Human Weakness: Response

 The response to human weakness is training and drilling

o Rick Rescoria found the evacuation procedures for the World Trade Centre

inadequate – trained and drilled his company’s employees on evacuation

o When the plane crashed, he evacuated and orchestrated the evacuation of around

2,000 people

 Similarly, training is needed for people to act rationally when security is exploited

o Train people to stop tailgaters

o Magicians and how they create distractions and trick you psychologically

4.3 Physical Security

 Having a secure communication protocol is useless without protecting physical access

o Latest CIA leaks targeted physical access, e.g. televisions, optic fibres

o Other physical access including stealing, key logging, microphones

 Tamper-proof vs tamper-evident – prevent tampering or know of tampering

o E.g. ballot boxes with security tags need to be tamper-evident

o ATMs need to be tamper-proof to prevent access to ports

Kris Choy • 26 March 2017

4.4 Hashing

 Hashing: ensuring that a message has integrity (has not been tampered with) and this

follows with authentication (message comes from owner)

o Prevent a man in the middle attack, where someone could change or replay a

message

o Example: poker machine where a light beam reads the number of coins falling, but

could be tampered with by covering up the light beam

 Nonce: a number used once that prevents replay attacks, e.g. the time of day

o Time of day requires confidentiality – an alternative is a variable size or small fixed

length appended to the string

 Cryptographic hashing:

1. Sender and receiver decide on a secret, and sender appends secret to his message m.

2. Sender hashes his plaintext secret and message and sends the plaintext message m

and hash h(m).

3. The receiver can confirm by appending the hash to the plaintext and comparing

hashes.

o Cryptographic hashes must be easy to go from m to h(m), but very difficult to go

from h(m) to m

 Passwords can be stored as hashes and you can compare hashes to verify user

 Attacks:

o Pre-image attack: if given the hash h(m), you find the message m

o Birthday/collision attack: if you find two messages m1 and m2 that have the same

hash h(m)

 The birthday paradox (not actually a paradox but counterintuitive) – as long

as there are ~24 people, there is more than 50% chance that at least two

people share the same birthday (number of pairs grow quadratically)

o Second pre-image attack: given both the message m1 and hash h(m), you find an

m2 with the same h(m)

 Different from collision attack as you are given more information

 Current hashing algorithms:

o MD5 – too small, easy to brute force. Not collision or pre-image resistant

o SHA0, SHA1, SHA2 – all developed with the NSA, the first two considered broken

o SHA3 not developed with the NSA

 Broken: once a hashing algorithm can be attacked faster than brute force.

 Length Extension Attack: because most hashes are iterative and take part by part to hash, so

you could add to the end of a hash

o HMAC solves this by applying hash(k || hash(key || message))

