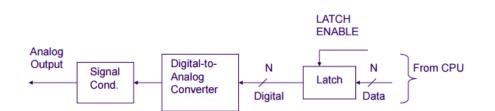
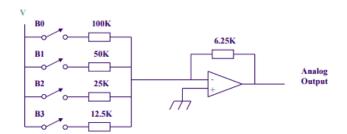

7. Analog I/O

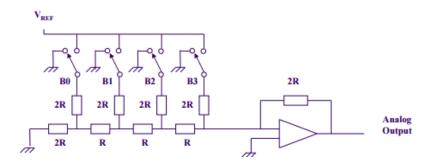
COMP2121 • KC Notes


7.1 Pulse Width Modulation

- Pulse Width Modulation (PWM): a way of digitally encoding analog signal levels
 - Relies on **modulating the duty cycle (pulse width/period)** to encode a specific analog signal level
 - Is still digital either full high or full low
 - o By changing the **pulse width** of the PWM waveform, we can control the output value

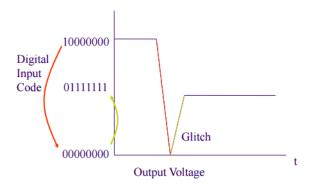
- AVR: timers can be configured for PWM via TCCR0A
 - **CTC: clear timer on compare match** modify the register **TCNTn**, when register value is reached, the counter resets to 0
 - Shorten/lengthen the saw-tooth pulse width
 - **Fast PWM**: when the register value is reached, triggers an update
 - Does not shorten the pulse width, but sets/clears flag
 - Phase correct PWM: when register value is reached, triggers an update
 - Is a triangle waveform, similar to Fast PWM


7.2 Digital-to-Analog Conversion

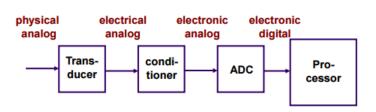

- <u>Digital to Analog Converter (DAC)</u>: A digital value is converted into a continuous value
 - A parallel output interface connects DAC to the CPU
 - Latch may be a part of the DAC or the output interface
 - **Signal condition block** may be used to **filter and smooth** the quantised output, may also perform isolation, buffering, voltage amplification

7.2.1 DAC TYPES

- <u>Binary-weighted DAC</u>: A basic DAC circuit that uses weighted current supplied to the summing junction of the amplifier (as switches are closed)
 - **Higher resolution more range of resistors**, but temperature and switching problems



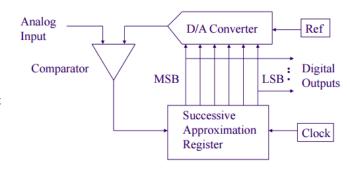
- <u>**R-2R Ladder DAC**</u>: as switches change from grounded to reference position, binary weighted current is supplied to summing junction
 - Higher resolution we only need more resisters, not a wide range



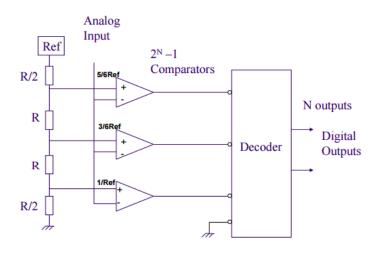
7.2.2 DAC SPECIFICATIONS

- Resolution and linearity
 - Resolution determined by the **number of bits** and the output voltage **corresponds to the smallest digital step**, i.e. 1 LSB (least significant bit)
 - Linearity: deviation in line and the output (a straight line drawn from zero to full scale, should be around $\frac{1}{2}$ LSB)
- Settling time: time for the output voltage to settle within an error band, usually $\pm \frac{1}{2}$ LSB
- Glitches
 - Caused by asymmetrical switching in the DAC switches. If the switch changes from 1 to 0 faster than changing 0 to 1 (e.g. 10000000 to 01111111)
 - Can be eliminated using sample and hold on the output – sample the data after glitch and settling time

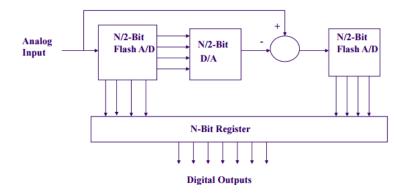
7.3 Analog to Digital Conversion


- <u>Analog to Digital Converter (ADC)</u>: A continuous value is converted into a digital value
 - **Transducer**: converts physical values to electrical signals (voltages or currents)
 - Signal conditioner:
 - Electrical isolation and buffering: protected from static discharges
 - Amplification: produce necessary voltage for the ADC
 - **Bandwidth limiting**: low-pass filter to limit the range of frequencies
 - If several analog inputs are digitised, values are sent to **analog multiplexer**
 - Allows multiple inputs to have its own signal conditioning
 - Sample-and-hold circuit holds while ADC converts signals
 - Three-state gates hold digital values generated by ADC

7.3.1 SAMPLING


- <u>Claude Shannon's Sampling Theorem</u>: the sampling frequency must be twice the signal frequency to preserve the full information of the signal
 - Known as the **Nyquist rate**
 - Signal can be exactly reproduced if sample frequency is \geq Nyquist rate
 - o If under, it is considered **undersampled** and will become **aliased** (bad!)

7.3.2 ADC TYPES


- <u>Successive Approximation Converter</u>: Each bit in the approximation register is tested starting from the most to the least significant bit
 - As each bit is set, **output of DAC** is compared with the input
 - If D/A output is lower, bit remains set and next bit is tried
 - If D/A output is higher, bit is reset
 - N bit-times needed to set and test all bits in succession

- <u>Parallel A/D Converter</u>: an array of 2^N-1 parallel comparators that produce output code in proportional time of comparators and encoder/decoder logic
 - o Fast but more costly
 - Also called flash A/D converter

- <u>Two-Stage Parallel A/D Converter</u>: lest costly than parallel (high res, high speed)
 - A coarse estimate by the first parallel converter and sent to the summer
 - o Subtracted from original, difference is converted and combined with first A/D

7.3.3 ADC SPECIFICATIONS

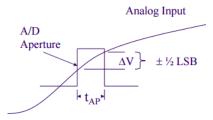
- Conversion time: time required to complete a conversion
 - An upper signal frequency limit that can be sampled without aliasing:
 - \circ E.g. for an ADC with conversion time of 100ms, $f_{max} = 5$ kHz

$$f_{max} = \frac{1}{2} f_{sample} = \frac{1}{2 \times conversion time}$$

- **Resolution:** Number of bits in the ADC which is equivalent to the smallest input signal for which the ADC will produce a digital code
 - Usually given as the number of bits, or a percentage of full-scale signal
 - \circ E.g. an 8-bit ADC on 5V full-scale signal, res = 19.5mV or 0.4%

Resolution =
$$\frac{\text{full scale signal}}{2^{n}}$$

- Accuracy: Smallest signal/noise to the measured signal, as a percentage
 - How close the signal is to the actual value


Accuracy =
$$\frac{V_{resolution}}{V_{signal}}$$

- Linearity: deviation in line and the output (a straight line drawn from zero to full scale, should be around ¹/₂ LSB)
- Missing codes: internal error in the successive approximation converter
- Aperture time: time the ADC is looking at the input signal change in input signal while it is looking can cause error in output

7.3.4 ADC ERRORS

- Noise: reduce noise or choose a resolution to control the peak-to-peak noise
- Aliasing: Errors are difficult to quantify and depend on amplitude of signals at frequencies below and above Nyquist frequency
- Aperture: A significant error due to signal variation during aperture time
 - \circ Uncertainty $\Delta V < 1$ LSB

• Design equation for aperture time
$$t_{AP} = \frac{1}{2\pi f_{MAX} 2^n}$$

