
3. Requirements Engineering

COMP1531 • KC Notes

3.1 Requirements Engineering

• Requirements engineering: formulating a well-defined problem to solve

o Has a set of criteria, where problems solve or fail to solve the criteria

o Involves different stakeholders – end users, business owner, architects and

developers

• Gathering: understand business context, gather what is required, to be accomplished

• Analysis: refining and identifying dependencies, conflicts, risk, ensures developer

understanding matches customer expectation

• Specification: Documents the function, quality and constraints of the software

o UML use-cases (scenarios describing how end user interacts)

o System Requirements Specification (SRS)

3.2 Agile Requirements Engineering

• Start with visioning: identify epic stories, key features and target users

• Brainstorm and breakdown features into user stories

• Detail user stories to yield iteration deliverables

• User stories: short simple descriptions of a feature narrated from the perspective of the

person who desires that capability – Role, Goal, Benefit

o Assign unique identifier

o Estimate size (time length, measured in story points) and priority

o Remember non-functional requirements (e.g. online via a browser)

As a <type of user>, I want <some goal> so that <some reason>.

• Three C’s Model: card (physical token), conversation (conversation with different

stakeholders), confirmation (formal confirmation of acceptance criteria)

• INVEST: evaluates the quality of a user story

o Independent: can be developed independently and delivered separately

o Negotiable: discussable further

o Valuable: reason is clear

o Estimable: understandable and can be estimated

o Small: deliverable within an iteration

o Testable: has clear acceptance criteria with error conditions

3.3 Acceptance Criteria

• Acceptance Criteria: Statements of requirements described from the perspective of the

customer – what is required for the business owner to accept the user story as “done”

• Types of Requirements:

o Functional requirements (inputs and outputs)

o Non-functional requirements (security, usability, reliability, performance,

supportability)

o On screen appearance requirements – should be simple and hand-drawn

3.4 Use Case Modelling

• Use case: step by step description of how a user will use the system-to-be to accomplish

business goals

o An envisioned sequence of actions and interactions between actors and the system

Actor Actor’s Goal Use Case Name

Student To choose and type responses in a form AnswerSurvey (UC-1)

SurveySystem To save a student’s responses SaveAnswers (UC-2)

SurveySystem To light up questions where the student has
incomplete answers in the survey

IncompleteAnswers (UC-3)

• Types of actors:

o Initiating actor: user who initiates the use case to achieve a goal

o Participating actor: user who participates but does not initiate

▪ Supporting actor: helps complete the use case

▪ Off-stage actor: passively participates the use case, e.g. Student in UC-3

• Use cases can be generalised, e.g. ‘UC-4: Complete survey’

• Use cases can be extended – can be optional or

conditional

• Traceability Matrix: mapping system requirements to

use cases

3.5 System Sequence Diagram

• Model a system workflow

o Arrows should be able to be “followed”

o Dashed arrows for returning a result (e.g. from a database)

