CHEM 9.4.4 THE ATMOSPHERE

Human activity has caused changes in the composition and the structure of the atmosphere. Chemists monitor these changes so that further damage can be limited

4.1 Describe the **composition and layered structure** of the atmosphere

- <u>Atmosphere</u>: layer of gas surrounding earth, 200 300 km thick
- Composition: 78% Nitrogen, 21% Oxygen, 0.9% Argon, and CO₂, Ne, He, CH₄, Kr, H, NO, CO, O₃
 - Water vapour ranges from 0.5% to 5% due to weather, etc
- Structure: divided into layers, troposphere, stratosphere, mesosphere, thermosphere (TSMT)
 - Troposphere 0 to 15 km; temp decreases as altitude increases
 - Weather experienced here
 - <u>Stratosphere</u> **15 to 50** km; temp **increases** as altitude increases **ozone** layer here
 - <u>Mesosphere</u> and <u>Thermosphere</u> = <u>ionosphere</u>
 - o Tropopause, stratopause and mesopause separate the four layers

4.2 Identify the **main pollutants** found in the **lower atmosphere** and their **sources**

- Carbon monoxide from cars, cigarettes, combustion stoves, fires
- NO_x from combustion (vehicles, power stations, factories)
- Hydrocarbons from vehicles, solvents
- Particulates from combustion, industrial processes, asbestos from insulation and buildings
- VOCs (volatile organic compounds) from commercial/domestic plants, homes, industrial
- Airborne lead from lead smelters, paint from old houses, leaded petrol

4.3 Describe **ozone** as a molecule able to act both as an **upper atmosphere UV radiation shield** and a **lower atmosphere pollutant**

- <u>Ozone</u>: O₃, pale blue toxic gas, present in the **stratosphere and troposphere**
- In stratosphere (upper atmosphere) ozone layer
 - Ozone blocks UV-B and UV-C, interacts with O₂ and O₃:
 - $O_{2(g)} + UV \rightarrow 2O \bullet_{(g)}$
 - $O_{3(g)} + UV \rightarrow O_{2(g)} + O_{(g)}$ (occurs more often as less energy required)
 - Oxygen radicals then react with O₂ or O₃ atoms, therefore absorbs UV light
- In troposphere (lower atmosphere) atmosphere pollutant
 - **Poisonous** to humans reacts with body tissue, causes **breathing and respiratory** issues
 - Produced by **photochemical smog** from NO₂ air pollution from car exhaust gases
 - $NO_{2(g)} + UV \rightarrow NO_{(g)} + O_{(g)}$
 - The O• joins with oxygen to form ozone

4.4 Describe the formation of a **coordinate covalent bond**

- Covalent bonding: two atoms share electrons for a full shell
- Co-ordinate covalent bond: one atom donates a pair of electrons, both atoms share the electrons
 - o Both atoms will result in a full shell
 - E.g. in **ozone**, see below

4.5 Demonstrate the formation of coordinate covalent bonds using Lewis electron dot structures

- Co-ordinate covalent bonds when one atom donates a pair of electrons
- For example, ozone forms a coordinate covalent bond and a covalent bond

- All oxygen atoms have 6 electrons initially
 - Centre oxygen atom **donates a pair of electrons** and shares with the third oxygen atom
- For example, CO has a coordinate covalent bond and a double covalent bond

4.6 Compare the **properties of the oxygen allotropes O₂ and O₃** and account for them on the basis of **molecular structure and bonding**

Property	Oxygen (O ₂)	Ozone (O₃)
Colour, Odour	Colourless, odourless	Pale blue, strong odour
Boiling Point	-183°C Lower molecular mass – less energy	-111°C
Solubility in Water	Low solubility – non polar, weak intermolecular forces in polar water	More soluble – bent structure allows more intermolecular forces
Stability	Very stable $O_{2(g)} \rightarrow 20 \bullet_{(g)} \Delta H = 498 \ kJ/mol$	Quite stable; easily decomposed to O ₂ $O_{3(g)} \rightarrow O_{2(g)} + O \bullet_{(g)} \Delta H = 106 kJ/mol$
Reactivity	Reacts to form oxides Moderately strong oxidising agent	Much more reactive Very strong oxidising agent – weak bond releases O• which can oxidise compound

• <u>Allotropes</u>: **different forms** of the **same element** with different physical properties

4.7 Compare the properties of the gaseous forms of oxygen and the oxygen free radical

- Free radical: natural species with an unpaired electron
 - \circ $\;$ Formed by splitting molecule into 2 neutral fragments, not ions
- Oxygen radical two unpaired electrons highly reactive
 - Due to presence of unpaired electrons and incomplete valence shell
- Much more reactive than O₂, cannot be compared with BP or colour

4.8 Identify the origins of chlorofluorocarbons (CFCs) and halons in the atmosphere

CHLOROFLUOROCARBONS

- <u>Chlorofluorocarbons</u>: compounds containing **chlorine**, **fluorine** and **carbon** only
- Replacements for ammonia in refrigeration, 1930s
- Properties: **BP** and dependence on **pressure** for frfridegs
 - **Odourless, non-flammable, non-toxic, inert**, unlike ammonia (toxic, odour)
- Uses: refrigerants, air conditioners, propellants in aerosol spray cans, foaming/cleaning agents
- Released in atmosphere, but were inert and insoluble CFCs spread throughout air
 - $\circ \quad \text{Began diffusing into stratosphere} \\$

HALONS

- <u>Halons</u>: compounds containing carbon, bromine and other halogens
- Properties: dense, non-flammable
- Uses: fire extinguishers (BCF fire-extinguishers) in cars and boats
- Released directly in atmosphere, diffusing into stratosphere

4.9 Identify and name **examples of isomers** (excluding geometrical and optical) **of haloalkanes** up to eight carbon atoms

- Use IUPAC nomenclature for naming haloalkanes, example (right):
 - 1. Carbon atoms: 3 = propane
 - 2. Halogen atoms (bromo-, chloro-, fluoro-, iodo-) in alphabetical order, add prefixes, number C location from most halogens (left or right)*

- a. If both ways have the same amount from both directions, start from more electronegative halogens (F > Cl > Br > I)
 - = 3-<u>b</u>romo-1,2-di<u>c</u>hloro- 1,3-di<u>f</u>luoro- (as Cl is more electronegative than Br)
- 3. Join alkane and halogens together = 3-bromo-1,2-dichloro-1,3-difluoropropane

• Isomers: compounds with same chemical formula, different structural formula

4.10 Discuss the **problems** associated with the **use of CFCs** and assess the **effectiveness** of steps taken to alleviate these problems

- Main problem destruction of ozone in the stratosphere (ozone layer)
 - 1. Chlorofluorocarbons in contact with **UV radiation**: $CCl_3F_{(g)} + UV \rightarrow Cl_{\bullet(g)} + CCl_2F_{\bullet(g)}$
 - 2. Chlorine radical reacts with ozone: $Cl_{\bullet(g)} + O_{3(g)} \rightarrow ClO_{\bullet(g)} + O_{2(g)}$
 - 3. Chlorine monoxide radical reacts with an O radical: $ClO_{\bullet(g)} + O_{\bullet(g)} \rightarrow Cl_{\bullet(g)} + O_{2(g)}$
 - 4. Chlorine is **regenerated** and can attack another O_3 molecule (chain reaction)
- Can be removed by $Cl_{\bullet(g)} + CH_{4(g)} \rightarrow HCl_{(g)} + CH_{3}\bullet_{(g)} \text{ OR } ClO_{\bullet(g)} + NO_{2(g)} \rightarrow ClONO_{2(g)}$
- Solutions: Montreal Protocol international treaty to protect ozone layer
 - Ban manufacture and use of CFCs by 1996, end halon use 1994, phasing out HCFCs
- Effectiveness: quite significant progress countries meeting required targets
 - o No technology to remove CFCs, replacements not as effective

4.11 Analyse the information available that indicates **changes in atmospheric ozone concentrations**, describe the **changes observed** and explain how this **information was obtained**

• Total amount of ozone measured since 1957

•

- Main depletion of ozone occurring over the Antarctic
- Ozone amount declines from 1970s, around **30% ozone depleted by 1985**
 - Not very dramatic now, though sometimes exceeding 50%
- Measurements taken on the ground, balloons and satellites
 - **Ground** UV spectrophotometers, pointed up to measure **light intensity** for different wavelengths
 - o Balloon placed in high-altitude weather balloons, pointing downwards from above stratosphere
 - o Satellite TOMS (total ozone mapping spectrophotometers), scans entire earth

