Chemical processes in industry require monitoring and management to maximise production

2.1 Identify and describe the industrial uses of ammonia

- Fertilisers reaction with sulfuric acid to form ammonium sulfate fertiliser
- Nitric acid through Ostwald Process to make ammonium nitrate fertiliser, explosives
- Detergents, pharmaceuticals, household cleaners, fibres and plastics (rayon, acrylics, nylon)

2.2 Identify that ammonia can be synthesised from its component gases, nitrogen and hydrogen

Both gases, N₂ and H₂ synthesise as NH₃ is made up of nitrogen and hydrogen atoms
 Therefore can be synthesised from N₂ and H₂

2.3 Describe that synthesis of ammonia occurs as a reversible reaction that will reach equilibrium

- Industrially known as Haber process: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} \Delta H = -92 \text{ kJ/mol}$
- Does not go to completion, instead reaches equilibrium (at ordinary pressures and temperatures, lies to left)
- Synthesis (Haber process) occurs by reacting nitrogen from air and hydrogen from natural gas (C₂H₄ + H₂O)
 - Gas is optimally synthesised (see below) and passed through catalyst
 - Gas then cooled and ammonia becomes a liquid, unreacted gases recycled

	1
2 compressed	n iron 3 catalyst
Togo mula	Converted.
1 + scribbed	
	N2, H2, NH3.
A CONTRACTOR OF	- 4. Cooler.
	4 stored,

2.4 Identify the reaction of hydrogen with nitrogen as exothermic

• The equation is $\Delta H = -92 \text{ kJ/mol}$, meaning that it is exothermic as ΔH is negative

2.5 Explain why the rate of reaction is increased by higher temperatures

- Increased temperature in reaction, causing increased movement in the particles (N₂ and H₂)
 - Therefore more particles collide and allows reaction speed to be increased
 - Equilibrium reached faster

2.6 Explain why the **yield of product** in the Haber process is **reduced** at **higher temperatures** using Le Chatelier's principle

- Le Chatelier's principle states that when an equilibrium is disturbed, it will move to minimise the disturbance
 - Reaction is **exothermic**: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ (+ heat)
 - Therefore higher temperatures will **reduce products** and equilibrium **moves to the left**

2.7 Explain why the Haber process is based on a **delicate balancing act** involving **reaction energy, reaction rate and equilibrium**

- Compromise conditions (balancing act) used to produce highest yield quickly
 - **Reaction energy** increased through higher temperatures, but affects equilibrium
 - o Reaction rate increased by increasing temperature (faster), catalyst (iron) and higher pressure
 - o Equilibrium to the right by lower temperatures, higher pressure, removal of ammonia continuously
 - Removal by liquefaction lowers concentration of NH₃ so shifts right
- Therefore:
 - Temperature at **400°C**, **250 atm with iron catalyst**

2.8 Explain that the **use of a catalyst** will **lower the reaction temperature** required and identify the catalyst(s) used in the Haber Process

- Catalyst used to increase reaction rate by reducing energy required for reaction to occur
- Catalyst is magnetite (iron oxide) Fe₃O₄
 - Surface is reduced to iron and finely ground large surface area
- Reaction rate can be increased through higher temperatures, but due to compromise, catalyst retains rate

2.9 Analyse the impact of increased pressure on the system involved in the Haber process

- Le Chatelier's principle increasing pressure will favour the side with less moles of gas
 - Gas ratio of 4:2 favours products increases yield of NH₃

2.10 Explain why **monitoring of the reaction vessel** used in the Haber process is **crucial** and discuss the **monitoring required**

- In reaction vessel, temperature (400°C) and pressure (250 atm)
 - High temperatures can damage catalyst, for optimal conversion
 - **High pressures** may cause explosion
- In monitoring reactants
 - \circ Ratio 1:3 for N₁:H₂ build-up of gas increases pressure
 - Contaminants removed oxygen removed (explosive with H₂), low CO, CO₂ and S (poisons catalyst)
- In monitoring products ammonia should be pure contaminates product

KC Notes

Copyright 2013

2.P1 Gather and process information from secondary sources to describe the **conditions** under which Haber developed the **industrial synthesis** of ammonia and evaluate its **significance at that time** in world history

- Fritz Haber 1908 developed method of synthesising ammonia
- Carl Bosch 1914 converted into industrial process (therefore Haber-Bosch process)
- Nitrates for fertilisers and explosives from saltpetre (sodium nitrate) from Chile/South America
 Ammonium nitrate, TNT and dynamite explosives
- British cut off supplies of saltpetre in World War I to Germany
- Haber process introduced, meaning a cheap source of nitrates
 - $\circ\quad$ NH_3 converted to nitric acid and nitrates through Ostwald process
 - o Therefore Germany continued war

