CHEM 9.2.5 NUCLEAR CHEMISTRY

Nuclear chemistry provides a range of materials

5.1 Distinguish between **stable and radioactive isotopes** and describe the **conditions** under which a **nucleus is unstable**

• **Isotopes**: elements w/ different no. of neutrons.

$$\begin{array}{ll} A = MASS \ NUMBER = p + n \\ Z = ATOMIC \ NO. = p \end{array}$$

- Radioactive isotopes release radiation (spontaneous emission) due to unstable nuclei
- Stable neutron ratio begins 1.0, 50 = 1.3, 80 = 1.5, > 83 all nuclei are not stable

Туре	Formula	Charge	Rel. Mass	Penetration
alpha (α)	⁴ ₂ He	+2	4	Low – paper
beta (β)	$^{0}_{-1}e$	-1	1/2000	Medium – 0.5 mm Al, 0.6 mm Pb
gamma (γ)	-	0	0	High – 5 cm Pb, 15 cm concrete

- Gamma rays are emitted with alpha/beta emissions
- Neutrons decompose into a proton and an electron, so:

$$^{60}_{27}Co \rightarrow {}^{0}_{-1}e + {}^{234}_{90}Th$$

5.2 Describe how transuranic elements are produced

- Transuranic element: element with atomic number > 92 (uranium)
- Do not exist in nature made in nuclear reactors and particle accelerators
- Made when isotope is not fissionable/fissile (able to be split)
- Uranium 238 bombarded w/ neutron \rightarrow Uranium 239 (unstable) \rightarrow Neptunium and beta decay (n \rightarrow p + e)

$${}^{238}_{92}\text{U} + {}^{1}_{0}\text{n} \rightarrow {}^{239}_{92}\text{U} \rightarrow {}^{0}_{-1}\text{e} + {}^{239}_{93}\text{Np}$$
(unstable)

5.3 Describe how commercial radioisotopes are produced

NUCLEAR REACTOR - structure which controlled nuclear fission occurs

- Nuclear fission: neutrons bombard atoms + split into 2 approx. equal fragments
- Uranium 235 splits into Ba and Kr

$${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3({}^{1}_{0}n) + energy$$

- Energy > than combustion of coal/petrol per gram
- Extra neutrons absorbed by rods to prevent hitting more U atoms (otherwise atomic bomb)
- Used for electricity (Japan and USA), used in Australia for medical + industrial use

PARTICLE ACCELERATOR – used for bombarding heavy nuclei w/ high speed +'ve particles

- Two types, linear accelerator and cyclotrons
 - Linear Accelerator straight line with alternating + and tubes
 - > 1 km length
 - Cyclotron accelerates particle in a spiral (compact)
 - Strong magnetic field and high frequency alternating current

5.4 Identify **instruments and processes** that can be used to **detect radiation**

- Photographic film first detected (Becqerel)
 - Darkens, used w/ radiation badges
- **Cloud Chamber** supersaturated water/alcohol vapour
 - Radiation ionises (lose an e⁻) the air + causes liquid to form
 - \circ α : straight dense tracks, β : zigzag, γ : faint
- Geiger Müller counter contains a gas (argon)
 - o Radiation ionises gas and moves to the middle to create electric pulse counts
 - Argon then moves to -'ve casing to complete circuit
- Scintillation counter exposed to radiation = flash of light, collected and amplified

5.5 Identify one use of a named radioisotope in industry and in medicine

- Cobalt-60 used in industrial radiography to inspect metal parts + welds for defects
- Technetium 99m used to detect circulation disorders in the body, e.g. blood clots

5.6 Describe the way in which the above named **industrial and medical radioisotopes** are **used** and explain their use in **terms of their properties**

COBALT 60

- Used by **directing radiation** towards object w/ film on other side
 - More radiation passes through cracks or flaws = structural problems detected
- Emits gamma rays can penetrate metal parts
- 1/2 life of 4 to 6 years + can be used chemically inert long life equipment

TECHNETIUM 99M

- m = **unstable**, loses the m when stable
- Attaches to an appropriate substance and emits gamma radiation
 - Radiation picked up to detect clotting/damage after heart attacks
- Emits low energy gamma radiation low damage to tissues, but can be measured w/ scintillation counter
- Very short ½ life of 6 hours quickly eliminated from body

