9.2.4 Special Relativity

Current and emerging understanding about time and space has been dependent upon earlier models of the transmission of light

4.1 Outline the features of the aether model for the transmission of light

- Aether: proposed medium of light and electromagnetic waves (as waves require a medium)
 - Undetectable (thin, transparent)
 - o Filled all space, low density, perfectly elastic
 - Permeated (spread throughout) all matter, permeable to all matter

4.2 Describe and evaluate the **Michelson-Morley attempt to measure the relative velocity** of the Earth through the aether

- Aim of experiment was to detect the velocity of the Earth through the aether using light
 - Two light rays sent towards and across aether wind
 - Apparatus swung 90° to swap ray direction
- Interference pattern was observed with the **interferometer**, if they were the same for both 0° and 90°, there would be **no change** in pattern
- Therefore, aether model was invalid theory as there was no evidence for existence of aether

4.3 Discuss the role of the **Michelson-Morley experiments** in making determinations about **competing theories**

- James Clerk Maxwell nature of light needing a medium, aether
- 1887: Michelson-Morley showed that there was an absence of aether
 - o 1905: Einstein published theory of special relativity
- Scepticism and acceptance of theories debated
 - Initially, Michelson-Morley experiments were ignored and aether theory was adapted
 - o After Einstein showed aether was not required, belief on aether faded

4.4 Outline the nature of inertial frames of reference

- Frame of reference: Anything with respect to which we describe motion and take measurements
 - Motion is different based on different perspectives/frames of reference
 - Inertial frame of reference: non-accelerating (constant or no motion) frame of reference
- When moving at a constant velocity, objects interact the same way as if not moving
 - E.g. a ball will fall to the ground and will not move sideways
 - Not able to identify if the frame is stationary or moving
- Non-inertial frame of reference: acceleration/deceleration

4.5 Discuss the principle of relativity

- Velocity of light has a constant value of c, regardless of relative motion of source or observer
- All inertial frames of reference are equal/relative and no inertial frame of reference is truer
 - o There is **no fixed, absolute frame of reference** to which all motions could be compared

4.6 Describe the significance of Einstein's assumption of the constancy of the speed of light

- Michelson-Morley's 'null' result can be explained
 - o Aether concept not required, and there is no absolute frame of reference

4.7 Identify that if c is constant then space and time become relative

- Speed of light, c, is measured using distance and time
- If c is constant, distance and time must change (i.e. become relative)
 - o E.g. a person in a spacecraft will always see the speed of light as c, even when velocity changes

4.8 Discuss the concept that **length standards** are **defined in terms of time** in contrast to the original metre standard

- Original metre standard: 1x10¹⁰⁻⁷ of distance from north pole to the equator
- Now defined by length of path travelled by light in a vacuum over 1/299792458th of a second
 - o Based on speed of light as it is a constant

4.9 Explain qualitatively and quantitatively the consequence of special relativity in relation to:

THE RELATIVITY OF SIMULTANEITY

- Relativity of simultaneity: two events simultaneous to one observer may not appear simultaneous to another observer in another frame of reference
- 'Thought experiment' light from two ends of the train
 - One observer standing equally distanced from both ends will see both lights turn on at the same time
 - Time taken for front light $t = \frac{d}{c}$ while the back light $t' = \frac{d'}{c}$
 - Since observer is equally distanced, d = d' and so t = t'
 - o Second observer is in a different frame of reference in the middle of the train travelling at v
 - Time taken for front light $t=rac{d+vt}{c}$ while the back light $t'=rac{dv-vt}{c}$
 - Since d = d', t' > t and so they will see the **front light before the back light**
- Therefore there is no truer inertial frame of reference

Example: Train

THE EQUIVALENCE BETWEEN MASS AND ENERGY

• Energy and mass are convertible based on:

$$E = mc^2$$

Where E = energy (J), m = mass (kg), c = speed of light (3 \times 10⁸ ms^{-1})

- Explains the Law of Conservation of Mass and Energy can only be transformed not destroyed
- Theory extended to creating large amounts of energy from mass nuclear

LENGTH CONTRACTION

- Length contraction: length of a moving object appears shorter to length at rest
 - Only occurs in dimension of direction of motion
- Similarly explained by proving time dilation (below)

$$l_v = l_o \sqrt{1 - \frac{v^2}{c^2}}$$

Where l_v = moving length (m), l_0 = length at rest (m), v = relative velocity (ms⁻¹), c = speed of light

TIME DILATION

- Time dilation: time runs slower (time interval increased) when moving
- 'Thought experiment' light clock on a moving train
 - One observer inside the train, sees light moving up and down
 - Time taken for light to go up and down $t_o = \frac{2d}{c}$
 - \circ Second observer outside train, sees light moving sideways, time taken $t_v = rac{2d'}{c}$
 - \circ Since d' > d, then time $t_v > t_o$, so time is lengthened when observing train

$$t_v = \frac{t_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Where t_0 = rest time (relatively stationary) (s), t_v = moving time (s), v = velocity of frame (ms⁻¹)

MASS DILATION

- Mass dilation: mass of moving object is greater than mass at rest
- 'Thought experiment' two spacecraft collision with momentum calculated

$$m_V = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$

 m_v = mass when stationary (kg), m_o = moving mass (kg), v = relative velocity (ms⁻¹)

4.10 Discuss the implications of mass increase, time dilation and length contraction for space travel

- As a spacecraft moves towards c:
 - Mass increases and therefore it becomes harder to accelerate (due to its mass)
 - o Time dilates, so prolonged space travel is possible, and time will run slower compared to Earth
 - However, if pilot returns, there is a change in velocity becomes a non-inertial frame
 - o Distance decreases, and spacecraft path will appear shorter than measured on Earth
 - Note: time is also running slower, so they still cover same distance over time

4.P1 Gather and process information to interpret the results of the Michelson-Morley experiment

- See 4.2
- The 'null' result of the Michelson-Morley experiment proved that there was no aether
- Aim of experiment was to detect the velocity of the Earth through the aether using light
 - Two light rays sent towards and across aether wind
 - o Apparatus swung 90° to swap ray direction
- Interference pattern was observed with the **interferometer**, if they were the same for both 0° and 90°, there would be **no change** in pattern
- Therefore, aether model was **invalid theory** as there was no evidence for existence of aether