CHEM 9.2.3 ETHANOL

Other resources, such as ethanol, are readily available from renewable resources such as plants

3.1 Describe the **dehydration of ethanol** to ethylene and identify the need of a **catalyst** in this process and the catalyst used

• Dehydration: chemical reaction, water removed from a compound @ 180

$$CH_3 - CH_2 - O - H \rightarrow CH_2 = CH_2 + H_2O$$

• Catalyst used is **concentrated sulphuric/phosphoric acid** + heat

3.2 Describe the **addition of water** to ethylene resulting in the **production of ethanol** and identify the need for a **catalyst** in this process and the catalyst used

• Hydration: reverse reaction, water added to a compound

$$\begin{array}{c} \mbox{dil. H}_2 \mbox{SO}_4 \mbox{ catalyst} \\ \mbox{CH}_2 = \mbox{CH}_2 + \mbox{H}_2 \mbox{O} & \rightarrow & \mbox{CH}_3 - \mbox{CH}_2 - \mbox{O} - \mbox{H} \end{array}$$

- Catalyst used is dilute (aqueous) sulphuric acid + heated
- Both reactions apply to any alkanol/alkene

3.3 Describe and account for the many **uses of ethanol as a solvent** for polar and non-polar substances

- Dissolves **polar** substances, e.g. chloroform, CHCl₃, common ether
 - OH end is very polar O is much more electronegative than C and H
- Dissolves **non-polar** substances, e.g. non-polar iodine, short-chain hydrocarbons (pentane, heptane)
 - Alkyl section creates dispersion forces between tail and non-polar solute
- Forms homogenous mixture w/ water due to H bonding

3.4 Outline the use of ethanol as a fuel and explain why it is called a renewable resource

• Ethanol readily burns (combustion)

$$C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(g)} + heat$$

- Easy to transport use in internal combustion engines, low C and CO emissions due to oxygen atom
- Ethanol used as a petrol extender 10-20% used w/o modification
 - Brazil 70s to reduce crude oil
- Renewable resource: made from CO₂, H₂O + sunlight, and returns CO₂ and H₂O when burnt

negative

0

positive

3.5 Describe conditions under which fermentation of sugars is promoted

- Suitable micro-organism yeast
- Suitable grain or fruit to mash with water
 - High content of starch/sugars, e.g. starchy grains (wheat, corn), tubers (potatoes), molasses, fruits
- Low oxygen
- Around **37°C** (blood temperature)

3.6 Summarise the **chemistry** of the **fermentation process**

- 1. **Enzymes** (biological catalysts) convert starch/sucrose \rightarrow glucose +/or fructose
- 2. Other enzymes convert it to ethanol + CO₂

$$\begin{array}{ccc} & \text{yeast} \\ \text{C}_{6}\text{H}_{12}\text{O}_{6\,(aq)} & \rightarrow & 2\text{CH}_{3}-\text{CH}_{2}-\text{OH}_{(aq)}+2\text{CO}_{2\,(g)} \end{array}$$

• Bubbles of CO₂ released

- 3. Yeast produces ethanol approx. **15%** higher level kills yeast
- 4. **Distillation** of aqueous mixture to increase alcohol content \rightarrow 95%

3.7 Define the **molar heat of combustion** of a compound and calculate the value for **ethanol** from first-hand data

- Molar heat of combustion: heat liberated when a mole of substance undergoes complete combustion w/ oxygen at standard atm. press. w/ final products being CO₂ and H₂O
 - ο ΔH enthalpy change = -(energy absorbed) because combustion is exothermic
 - $\circ \Delta H = mC\Delta T$ where: m = mass (g), C = heat capacity (j/g/K), ΔT = change in temperature (K)

heat absorbed by water = $mC\Delta T = 250 \times 4.18 \times (59 - 19) = 41800 \text{ J}$	Spirit burner contains ethanol		
ethanol used = 221.4 - 219.1 = 2.3 g	Mass of water	=	250.0 g
41800	Initial mass of burner	=	221.4 g
heat released per gram of ethanol = $\frac{-23}{23}$ = 18173.913 J g ⁻¹	Final mass of burner	=	219.1 g
$= 18.17 \text{ kJ g}^{-1}$	Initial temperature of water	=	19.0°C
	Final temperature of water	=	59.0°C
moley mass of other of C II OII = $2 \times 12.01 + 6 \times 1.000 + 16 = 46.069$ g			

molar mass of ethanol, $C_2H_5OH = 2 \times 12.01 + 6 \times 1.008 + 16 = 46.068 \text{ g}$ \therefore heat released per mole = 18.173913 × 46.068 = 837.0 kJ mol⁻¹

3.8 Assess the potential of ethanol as an alternative fuel and discuss the advantages and disadvantages of its use

- Increase of petrol prices, 80% demand for fuel is petroleum derived
- 30% Brazilian cars run on >25% ethanol fuels
- Australia + sugar cane and wheat fermentation (currently uneconomic)

Advantages	Disadvantages
 Renewable – reduce use of fossil fuel 	 Large agricultural land req.
Greenhouse neutral	 Engines require modification for >20%
 Cleaner and more efficient (oxygen atom) 	Environment: soil erosion, deforestation, salinity

3.9 Identify the IUPAC nomenclature for straight-chained alkanols from C1 to C8

• Substitute H for $OH \rightarrow$ '-ol', include number where it appears, e.g. 2-propanol