8.4.3 ENERGY AND WORK

Moving vehicles have kinetic energy, and energy transformations are an important aspect in understanding motion

3.1 Identify that a moving object possesses kinetic energy and that work done on that object can increase that energy

- Kinetic energy form of energy associated with motion of an object, capacity to do work
 - $KE = \frac{1}{2}mv^2$ (KE is kinetic energy (j), m is mass (kg), v is velocity (ms⁻¹)
- Work when an object moves in direction of a force is applied to it
 - o If object moves, work must be done on that object
 - o Positive work force used to accelerate vehicle, negative work force used to decelerate vehicle
 - **W** = **Fs** (F is force, s is distance)

3.2 Describe the **energy transformations** that occur in **collisions**

- Collisions may be elastic, where total KE is conserved and continue moving, or inelastic:
- Vehicles colliding causes transformation of kinetic energy to other forms of energy
 - Potential energy of deformation energy stored because shape changes
 - o Sound energy and Heat energy transmitted in air

3.3 Define the law of conservation of energy

- Closed system energy cannot leave or enter, it can only be transformed or transferred
 - o Total energy in a closed system does not change

Practical section in construction!

- Solve problems and analyse information to determine the kinetic energy of a vehicle and the work done using the formulae: $E_k = \frac{1}{2} m v^2$ and W = Fs
- Analyse information to trace the energy transfers and transformation in collisions leading to irreversible distortions
 - o Energy can be transformed into potential energy stored in an object due to change in shape
 - o Can cause irreversible distortions, e.g. potential energy is difficult to transform again
 - Example: panels of a car deforming