8.2.2 SOUND

Features of a wave model can be used to account for the properties of sound

drum

2.1 Identify that sound waves are vibrations or oscillations of particles in a medium

- Sound waves are longitudinal waves in any medium formed by compressions and rarefactions of particles
- A drum causes difference in air pressure (gas) due to vibration of drum membrane

urum														
-	•	•	٠	•	•		 •	•		•	•			
		•	٠	•	٠	٠	 ٠	•	•	•	•	٠	٠	
•		•	٠		٠	٠						٠	٠	
			٠		٠							٠	٠	
		•	٠		٠	٠	 •	•					٠	
			٠		٠									
		•	٠	•	٠		 •	•		•	•			

2.2 Relate **compressions and rarefactions** of sound waves to the **crests and troughs** of **transverse waves** used to represent them

• Longitudinal waves can be represented as a transverse wave by **replacing displacement** (of transverse wave particles) **with pressure**

2.3 Explain qualitatively that **pitch is related to frequency** and **volume to amplitude** of sound waves

- Pitch is how high or low a note is, directly related to frequency:
 - The higher the pitch, the higher the frequency as there are more vibrations
 - Amplitude remains the same
- Volume is how loud or soft a note is, directly related to amplitude:
 - The higher the volume, the higher the amplitude as there is more energy emitted
 - Frequency remains the same

2.4 Explain an echo as a reflection of a sound wave

- Echo occurs as sound is reflected from an object back to the source
 - Source **does not absorb much energy**, therefore sound wave is heard again, softer
- Speed of sound is ≈ 340 m/s,
 - E.g. sound from a distance of 17 metres = echo in 0.1 seconds (0.05 to and back)

Copyright 2013

2.5 Describe the principle of superposition and compare the resulting waves to the original waves in sound

- Occurs when two or more sources of vibration interfere with each other
- Superposition: the amplitude of the combined wave is equal to sum of amplitudes of component waves
 Constructive interference (reinforcement) and destructive interference (cancellation)

constructive interference

destructive interference

- Interference can occur in sound **two loudspeakers** connected to same oscillator (so, same amplitude and wavelength
 - o Regions of increased loudness (constructive) anti-nodes
 - Regions of **quietness** (destructive) nodes
- Also occurs with light, with regions of light and dark

Copyright 2013